Solar Glossary

What is solar anyway?

Lots of words explaining, in excruciating detail, everything you need to know about solar, solar panels, and electricity. Do not read while operating heavy machinery.

What is solar power/energy?

Solar power is energy from the sun that is converted into thermal or electrical energy. Solar energy is the cleanest and most abundant renewable energy source available, and the U.S. has some of the richest solar resources in the world. Solar technologies can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.

How do you harness solar energy?

There are three main ways to harness solar energy: photovoltaics, solar heating & cooling, and concentrating solar power. Photovoltaics generate electricity directly from sunlight via an electronic process and can be used to power anything from small electronics such as calculators and road signs up to homes and large commercial businesses. Solar heating & cooling (SHC) and concentrating solar power (CSP) applications both use the heat generated by the sun to provide space or water heating in the case of SHC systems, or to run traditional electricity-generating turbines in the case of CSP power plants.


Photovoltaic (PV) devices generate electricity directly from sunlight via an electronic process that occurs naturally in certain types of material, called semiconductors. Electrons in these materials are freed by solar energy and can be induced to travel through an electrical circuit, powering electrical devices or sending electricity to the grid.

PV devices can be used to power anything from small electronics such as calculators and road signs up to homes and large commercial businesses.

How does PV technology work?

Photons strike and ionize semiconductor material on the solar panel, causing outer electrons to break free of their atomic bonds. Due to the semiconductor structure, the electrons are forced in one direction creating a flow of electrical current. Solar cells are not 100% efficient in crystalline silicon solar cells, in part because only certain light within the spectrum can be absorbed. Some of the light spectrum is reflected, some is too weak to create electricity (infrared) and some (ultraviolet) creates heat energy instead of electricity.

Other Types of Photovoltaic Technology

In addition to crystalline silicon (c-Si), there are two other main types of PV technology:

  • Thin-film PV is a fast-growing but small part of the commercial solar market. Many thin-film firms are start-ups developing experimental technologies. They are generally less efficient – but often cheaper – than c-Si modules.
  • In the United States, concentrating PV arrays are found primarily in the desert Southwest. They use lenses and mirrors to reflect concentrated solar energy onto high-efficiency cells. They require direct sunlight and tracking systems to be most effective.
  • Building-integrated photovoltaics serve as both the outer layer of a structure and generate electricity for on-site use or export to the grid. BIPV systems can provide savings in materials and electricity costs, reduce pollution, and add to the architectural appeal of a building.

Modern Photovoltaics

The cost of PV has dropped dramatically as the industry has scaled up manufacturing and incrementally improved the technology with new materials. Installation costs have come down too with more experienced and trained installers. Globally, the U.S. has the third largest market for PV installations, and is continuing to rapidly grow.

Most modern solar cells are made from either crystalline silicon or thin-film semiconductor material. Silicon cells are more efficient at converting sunlight to electricity, but generally have higher manufacturing costs. Thin-film materials typically have lower efficiencies, but can be simpler and less costly to manufacture. A specialized category of solar cells – called multi-junction or tandem cells – are used in applications requiring very low weight and very high efficiencies, such as satellites and military applications. All types of PV systems are widely used today in a variety of applications.

cartoon image of Sonny, our Solar Guide

Talk to Sonny, our Solar Guide

Sonny is our advanced solar expert, designed to discuss all things solar without you having to talk to a real person.

Talk to Sonny

Solar Heating and Cooling

Solar heating & cooling (SHC) technologies collect the thermal energy from the sun and use this heat to provide hot water, space heating, cooling, and pool heating for residential, commercial, and industrial applications. These technologies displace the need to use electricity or natural gas.

Solar Water Heating Technology

Solar water heating systems can be installed on most homes in the U.S., and are comprised of three main elements: the solar collector, insulated piping, and a hot water storage tank. Electronic controls can also be included, as well as a freeze protection system for colder climates. The solar collector gathers the heat from solar radiation and transfers the heat to potable water. This heated water flows out of the collector to a hot water tank, and is used as necessary. Auxiliary heating can remain connected to the hot water tank for back‐up if necessary.

Solar Air Technology

Solar air heating is a solar thermal technology used for commercial and industrial buildings in which the energy from the sun is captured and used to heat air. It addresses one of the largest usages of building energy in heating climates, which is space heating. It is also used for agricultural drying.

Most solar air heating systems are wall-mounted, which allow them to capture a maximum amount of solar radiation in the winter. Specially perforated solar collector panels are installed several inches from a south facing wall, creating an air cavity. The air is generally taken off the top of the wall and is heated anywhere from 30-100 degrees F above ambient on a sunny day. The solar heated air is then ducted into the building via a connection to the HVAC intake.

In colder climates with the possibility of freezing temperatures, an indirect system is used. An antifreeze solution, such as non-toxic propylene glycol, is heated in the solar collector and circulated to the hot water storage tank via a heat exchanger. The potable water in the storage tank is warmed by the hot, antifreeze filled heat exchanger, and the heated water can then be used as necessary, while the cooled glycol is piped back to the solar collector to be heated again.

Another common type of solar water heating system design for cold climates is called “drain back.” This type of solar energy system typically uses water as the heat transfer fluid, and is designed to allow all of the water in the solar collector to “drain back” to a holding tank in a heated portion of the building it is used on. When no sunlight is available for heating, the solar pump turns off and the water flows into the drain back tank by means of gravity.

No matter which type of solar energy system is employed, a properly designed and installed solar water heating system can be expected to provide a significant percentage (40 to 80 percent) of a building’s hot water needs.

Concentrating Solar Power

Concentrating solar power (CSP) plants use mirrors to concentrate the sun’s energy to drive traditional steam turbines or engines that create electricity. The thermal energy concentrated in a CSP plant can be stored and used to produce electricity when it is needed, day or night. Today, roughly 1,815 megawatts (MWac) of CSP plants are in operation in the United States.

Parabolic Trough

Parabolic trough systems use curved mirrors to focus the sun’s energy onto a receiver tube that runs down the center of a trough. In the receiver tube, a high-temperature heat transfer fluid (such as a synthetic oil) absorbs the sun’s energy, reaching temperatures of 750°F or higher, and passes through a heat exchanger to heat water and produce steam. The steam drives a conventional steam turbine power system to generate electricity. A typical solar collector field contains hundreds of parallel rows of troughs connected as a series of loops, which are placed on a north-south axis so the troughs can track the sun from east to west. Individual collector modules are typically 15-20 feet tall and 300-450 feet long.

Compact Linear Fresnel Reflector

CLFR uses the principles of curved-mirror trough systems, but with long parallel rows of lower-cost flat mirrors. These modular reflectors focus the sun’s energy onto elevated receivers, which consist of a system of tubes through which water flows. The concentrated sunlight boils the water, generating high-pressure steam for direct use in power generation and industrial steam applications.

Power Tower

Power tower systems use a central receiver system, which allows for higher operating temperatures and thus greater efficiencies. Computer-controlled mirrors (called heliostats) track the sun along two axes and focus solar energy on a receiver at the top of a high tower. The focused energy is used to heat a transfer fluid (over 1,000° F) to produce steam and run a central power generator. Energy storage can be easily and efficiently incorporated into these projects, allowing for 24 hour power generation.


Mirrors are distributed over a parabolic dish surface to concentrate sunlight on a receiver fixed at the focal point. In contrast to other CSP technologies that employ steam to create electricity via a turbine, a dish-engine system uses a working fluid such as hydrogen that is heated up to 1,200° F in the receiver to drive an engine. Each dish rotates along two axes to track the sun.